ISBN-10:
0081024207
ISBN-13:
9780081024201
Pub. Date:
07/02/2019
Publisher:
Elsevier Science
Bioelectronics and Medical Devices: From Materials to Devices - Fabrication, Applications and Reliability

Bioelectronics and Medical Devices: From Materials to Devices - Fabrication, Applications and Reliability

Current price is , Original price is $350.0. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Overview

Bioelectronics and Medical Devices: From Materials to Devices-Fabrication, Applications and Reliability reviews the latest research on electronic devices used in the healthcare sector, from materials, to applications, including biosensors, rehabilitation devices, drug delivery devices, and devices based on wireless technology. This information is presented from the unique interdisciplinary perspective of the editors and contributors, all with materials science, biomedical engineering, physics, and chemistry backgrounds. Each applicable chapter includes a discussion of these devices, from materials and fabrication, to reliability and technology applications. Case studies, future research directions and recommendations for additional readings are also included.

The book addresses hot topics, such as the latest, state-of the-art biosensing devices that have the ability for early detection of life-threatening diseases, such as tuberculosis, HIV and cancer. It covers rehabilitation devices and advancements, such as the devices that could be utilized by advanced-stage ALS patients to improve their interactions with the environment. In addition, electronic controlled delivery systems are reviewed, including those that are based on artificial intelligences.




  • Presents the latest topics, including MEMS-based fabrication of biomedical sensors, Internet of Things, certification of medical and drug delivery devices, and electrical safety considerations
  • Presents the interdisciplinary perspective of materials scientists, biomedical engineers, physicists and chemists on biomedical electronic devices
  • Features systematic coverage in each chapter, including recent advancements in the field, case studies, future research directions, and recommendations for additional readings

Product Details

ISBN-13: 9780081024201
Publisher: Elsevier Science
Publication date: 07/02/2019
Series: Woodhead Publishing Series in Electronic and Optical Materials Series
Pages: 1006
Sales rank: 1,214,422
Product dimensions: 6.00(w) x 9.00(h) x (d)

About the Author

Dr. Pal pursued his graduation in Pharmacy from University of Delhi, New Delhi, India in the year 2002 followed by post-graduation in Biomedical Engineering from Jadavpur University, Kolkata, India in the year 2004. Later, he did his Ph.D. in Materials Science from Indian Institute of Technology, Kharagpur, India in the year 2006. Subsequently, he joined Ryerson University, Toronto, Canada as a post-doctoral fellow in the year 2007. During his tenure at Ryerson University, he served as Vice-Chair (Elect), HQPA, AFMNet Network of Excellence, Canada. He joined National Institute of Technology, Rourkela, India in the year 2009 as an Assistant Professor in Biomedical Engineering. He is currently the Professor-in-Charge of Medical Electronics and Instrumentation Laboratory in the Department of Biotechnology and Medical Engineering, National Institute of technology, Rourkela, India. His major research interests revolve around Biomedical Signal Processing and Biomedical Equipment Design. He is also working in the fields of soft materials and controlled drug delivery. He has more than 140 publications in SCI cited journals of high repute, Book Chapters and peer-reviewed conferences. He is a very well cited researcher having more than 1800 citations.

Dr. Kraatz studied chemistry at the Universities of Düsseldorf and the University of Kent in Canterbury and obtained his PhD in 1993 at the University of Calgary. In 2011, accepting a position at the University of Toronto, where he is a full professor in chemistry and currently serves as Vice-Principal Research at the University of Toronto Scarborough. He has served as Director of the Nanofabrication Facility at Western and as Chair of the Department of Physical and Environmental Sciences at U of T. Awards and recognitions include the Canada Research Chair in Biomaterials, the PetroCanada Young Innovator Award, the Award in Pure or Applied Inorganic Chemistry from the Canadian Society for Chemistry, and the Principal’s Research Award. Bernie’s research interests are at the interface of inorganic chemistry and electrochemistry, focusing on the design of bioconjugates for sensing applications, surface-supported functional bioconjugates, and bio(nano)materials. He has published more than 250 peer-reviewed papers and two books.

Dr. Khasnobish is currently employed as a Research Scientist at TATA Consultancy Services (TCS) Innovation Lab, Kolkata, India, where she is actively doing research in cognitive neuroscience, tele-rehabilitation, stress analysis from physiological signals, electrooculography and eye tracking. She completed her graduation and post-graduation in Biomedical Engineering. She completed her Ph. D. in Engineering in the field of “Human- Computer interface based devices for biomedical applications” from Jadavpur University, Kolkata, India in the year 2015. She received fellowship from the Council of Scientific & Industrial Research, Government of India for completing her Ph.D. dissertation work. Her past research experience revolved around biopotential signal (e.g. EEG, HRV, EMG and EOG) acquisition and processing, brain and human computer interactions, circuit design and development, signal and image processing, haptics, somatosensory perceptions, computational intelligence and soft computing techniques. She has >40 research papers to her credit with a total citation of >140.

Dr. Bag is presently an Assistant Professor and Head of the Department of the Department of Biomedical Engineering, JIS College of Engineering, Kalyani, West Bengal since 2005. Dr. Bag obtained his Ph.D. degree in Biomedical Engineering from Jadavpur University, Kolkata in the year 2007. He did his graduation in Pharmaceutical Technology and post- graduation in Biomedical Engineering from Jadavpur University during the year 2000 and 2002, respectively. He has published more than 24 research papers in various national and international journals and proceedings of conferences. He also presented his research accomplishments across the globe. He received various grants from Indian government funding agencies for carrying out research and travel for attending conferences. He is a reviewer and editorial board members of various international journals of repute. He was actively involved in organizing various national/ international conferences.

Prof. Indranil Banerjee did his Ph. D. in Biotechnology (Tissue Engineering) from Indian Institute of Technology Kharagpur, India in the year 2011. Presently, is holding the position of an Assistant Professor in the Department of Biotechnology and Medical Engineering at National Institute of Technology- Rourkela. He is the Professor-in-Charge of the Bioprocess Laboratory and Biomicrofludics Laboratory. His group is actively involved in understanding the cell physiology in response to biomaterials developed on a length scale (nano to macro). He was a visiting scientist in Maxplanck Institute of Intelligent System, Germany. Dr. Banerjee has authored 35 SCI cited publications in various journals of repute with a total citation of more than 450. He is also serving as industrial consultant.

Dr. Kuruganti received the B.Sc. and M.Sc. degrees in electrical engineering and a Ph.D. degree in human factors engineering from the University of New Brunswick (UNB), Fredericton, NB, Canada. She joined UNB in 2004 and is currently a Professor in the Faculty of Kinesiology at UNB and Co-Director of the Andrew and Marjorie McCain Human Performance Laboratory within the Richard J. CURRIE Centre at UNB. Dr. Kuruganti has also served as the Assistant Dean (Graduate Studies and Research) of the Faculty of Kinesiology since September 2013. Dr. Kuruganti is a Registered Professional Engineer with the Association of Professional Engineers and Geoscientists (APEGNB), a Fellow of Engineers Canada, a member of the International Society of Electrophysiology and Kinesiology, and the Association of Canadian Ergonomists. Her research interests include human movement analysis, neuromuscular and occupational physiology, electromyography and human factors.

Table of Contents

Part I General Introduction 1. Man-instrument systems 2. Biomedical sensors and signal conditioning 3. Biosignal processing 4. Telemedicine 5. Electrical safety of medical devices 6. Certification of medical devices

Part II Sensing and imaging platforms 7. Lab-on-a-chip sensing devices 8. MEMS based biosensors 9. Impedance based biosensors 10. Optical biosensors 11. Enzyme based biosensors 12. Microbial biosensors 13. Smartphone- based biosensors 14. Impedance tomography 15. Optical tomography 16. Conventional imaging systems

Part III Biosignal controlled assistive devices 17. Electrooculogram controlled assistive devices 18. Electroencephalogram controlled assistive devices 19. Electromyogram controlled assistive devices 20. Electro-stimulation based assistive devices

Part IV Drug delivery devices 21. Iontophoretic drug delivery systems 22. Electrophoretic delivery devices 23. Ultrasonic drug delivery systems 24. MEMS based drug delivery devices

Part V Wireless technology 25. Medical devices based on Xbee 26. Medical devices based on Bluetooth 27. Medical devices based on Internet of Things 28. Wireless home automation for the severely disabled

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews