ISBN-10:
3540241957
ISBN-13:
9783540241959
Pub. Date:
04/19/2005
Publisher:
Springer-Verlag New York, LLC
Groundwater Geochemistry: A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems / Edition 1

Groundwater Geochemistry: A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems / Edition 1

Other Format

Current price is , Original price is $99.0. You

Temporarily Out of Stock Online

Please check back later for updated availability.

This item is available online through Marketplace sellers.

Overview

The second edition of "Groundwater Geochemistry - A practical guide to modeling of natural and contaminated aquatic systems" remains a comprehensive text book offering beginners and advanced modelers alike a minimum theoretical background and a strong focus on the practical solution of geochemical modeling with Phreeqc. The new edition covers the possibility of using the CD-Music concept within the new version of Phreeqc.

Product Details

ISBN-13: 9783540241959
Publisher: Springer-Verlag New York, LLC
Publication date: 04/19/2005
Edition description: BK&CD-ROM
Pages: 200
Product dimensions: 6.20(w) x 9.50(h) x 0.70(d)

Table of Contents

1 Theoretical Background 1

1.1 Equilibrium reactions 1

1.1.1 Introduction 1

1.1.2 Thermodynamic fundamentals 5

1.1.2.1 Mass-action law 5

1.1.2.2 Gibbs free energy 7

1.1.2.3 Gibbs phase rule 8

1.1.2.4 Activity 8

1.1.2.5 Ionic strength 10

1.1.2.6 Calculation of activity coefficient 10

1.1.2.6.1 Theory of ion-association 10

1.1.2.6.2 Theory of ion-interaction 13

1.1.2.7 Comparison ion-association versus ion-interaction theory 14

1.1.3 Interactions at the liquid-gaseous phase boundary 17

1.1.3.1 Henry Law 17

1.1.4 Interactions at the liquid-solid phase boundary 19

1.1.4.1 Dissolution and precipitation 19

1.1.4.1.1 Solubility-product 19

1.1.4.1.2 Saturation index 22

1.1.4.1.3 Limiting mineral phases 22

1.1.4.2 Sorption 25

1.1.4.2.1 Hydrophobic/hydrophilic substances 25

1.1.4.2.2 Ion exchange 25

1.1.4.2.3 Mathematical description of the sorption 30

1.1.5 Interactions in the liquid phase 35

1.1.5.1 Complexation 35

1.1.5.2 Redox processes 37

1.1.5.2.1 Measurement of the redox potential 37

1.1.5.2.2 Calculation of the redox potential 38

1.1.5.2.3 Presentation in predominance diagrams 43

1.1.5.2.4 Redox buffer 47

1.1.5.2.5 Significance of redox reactions 47

1.2 Kinetics 50

1.2.1 Kinetics of various chemical processes 50

1.2.1.1 Half-life 50

1.2.1.2 Kinetics of mineral dissolution 51

1.2.2 Calculation of the reaction rate 52

1.2.2.1 Subsequent reactions 53

1.2.2.2 Parallel reactions 54

1.2.3 Controlling factors on the reaction rate 54

1.2.4 Empirical approaches for kinetically controlled reactions 55

1.3 Reactive mass transport 58

1.3.1 Introduction 58

1.3.2 Flow models 58

1.3.3 Transport models 59

1.3.3.1Definition 59

1.3.3.2 Idealized transport conditions 61

1.3.3.3 Real transport conditions 61

1.3.3.1 Exchange within double-porosity aquifers 62

1.3.3.4 Numerical methods of transport modeling 63

1.3.3.4.1 Finite-difference/finite-element method 65

1.3.3.4.2 Coupled methods 66

2 Hydrogeochemical Modeling Programs 69

2.1 General 69

2.1.1 Geochemical algorithms 69

2.1.2 Programs based on minimizing free energy 71

2.1.3 Programs based on equilibrium constants 72

2.1.3.1 Phreeqc 72

2.1.3.2 EQ 3/6 74

2.1.4 Thermodynamic databases 76

2.1.4.1 General 76

2.1.4.2 Structure of thermodynamic databases 78

2.1.5 Problems and sources of error in geochemical modeling 81

2.2 Use of Phreeqc 85

2.2.1 The structure of Phreeqc and its graphical user interfaces 85

2.2.1.1 Input 88

2.2.1.2 Database 95

2.2.1.3 Output 96

2.2.1.4 Grid 97

2.2.1.5 Chart 97

2.2.2 Introductory Examples for Phreeqc Modeling 97

2.2.2.1 Equilibrium reactions 97

2.2.2.1.1 Example 1a standard output - seawater analysis 98

2.2.2.1.2 Example 1b equilibrium - solution of gypsum 100

2.2.2.1.3 Example 1c equilibrium - solution of calcite with CO2 101

2.2.2.1.4 Example 1d: Modeling uncertainties - Ljungskile 103

2.2.2.2 Introductory example for sorption 107

2.2.2.3 Introductory examples for kinetics 114

2.2.2.3.1 Defining reaction rates 115

2.2.2.3.2 Basic within Phreeqc 117

2.2.2.4 Introductory example for isotope fractionation 122

2.2.2.5 Introductory example for reactive mass transport 126

2.2.2.5.1 Simple 1D transport: Column experiment 126

2.2.2.5.2 1D transport, dilution, and surface complexation in an abandoned uranium mine 130

2.2.2.5.3 3D transport with Phast 134

3 Exercises 141

3.1 Equilibrium reactions 143

3.1.1 Groundwater - Lithosphere 143

3.1.1.1 Standard output well analysis 143

3.1.1.2 Equilibrium reaction - solubility of gypsum 144

3.1.1.3 Disequilibrium reaction - solubility of gypsum 144

3.1.1.4 Temperature dependency of gypsum solubility in well water 144

3.1.1.5 Temperature dependency of gypsum solubility in pure water 144

3.1.1.6 Temperature-and P(CO2)-dependent calcite solubility 144

3.1.1.7 Calcite precipitation and dolomite dissolution 145

3.1.1.8 Calcite solubility in an open and a closed system 145

3.1.1.9 Pyrite weathering 145

3.1.2 Atmosphere - Groundwater - Lithosphere 146

3.1.2.1 Precipitation under the influence of soil CO2 146

3.1.2.2 Buffering systems in the soil 147

3.1.2.3 Mineral precipitates at hot sulfur springs 147

3.1.2.4 Formation of stalactites in karst caves 148

3.1.2.5 Evaporation 149

3.1.3 Groundwater 150

3.1.3.1 The pE-pH diagram for the system iron 150

3.1.3.2 The Fe pE-p-H diagram considering carbon and sulfur 152

3.1.3.3 The pH dependency of uranium species 152

3.1.4 Origin of groundwater 153

3.1.4.1 Pumping of fossil groundwater in arid regions 155

3.1.4.2 Salt water/fresh water interface 156

3.1.5 Anthropogenic use of groundwater 157

3.1.5.1 Sampling: Ca titration with Edta 157

3.1.5.2 Carbonic acid aggressiveness 157

3.1.5.3 Water treatment by aeration - well water 158

3.1.5.4 Water treatment by areation - sulfur spring 158

3.1.5.5 Mixing of waters 159

3.1.6 Rehabilitation of groundwater 159

3.1.6.1 Reduction of nitrate with methanol 159

3.1.6.2 Fe(0) barriers 160

3.1.6.3 Increase in pH through a calcite barrier 160

3.2 Reaction kientics 160

3.2.1 Pyrite weathering 160

3.2.2 Quartz-feldspar-dissolution 161

3.2.3 Degradation of organic matter within the aquifer on reduction of redox-sensitive elements (Fe, As, U, Cu, Mn, S) 162

3.2.4 Degradation of tritium in the unsaturated zone 163

3.3 Reactive transport 166

3.3.1 Lysimeter 166

3.3.2 Karst spring discharge 167

3.3.3 Karstification (corrosion along a karst fracture) 168

3.3.4 The pH increase of an acid mine water 169

3.3.5 In-situ leaching 170

3.3.6 3D Transport - Uranium and arsenic contamination plume 171

4 Solutions 173

4.1 Equilibrium reactions 173

4.1.1 Groundwater - Lithosphere 173

4.1.1.1 Standard output well analysis 173

4.1.1.2 Equilibrium reaction - solubility of gypsum 175

4.1.1.3 Disequilibrium reaction - solubility of gypsum 175

4.1.1.4 Temperature dependency of gypsum solubility in well water 176

4.1.1.5 Temperature dependency of gypsum solubility in pure water 177

4.1.1.6 Temperature- and P(CO2)-dependent calcite solubility 177

4.1.1.7 Calcite precipitation and dolomite dissolution 178

4.1.1.8 Comparison of the calcite solubility in an open and a closed system 179

4.1.1.9 Pyrite weathering 179

4.1.2 Atmosphere - Groundwater - Lithosphere 181

4.1.2.1 Precipitation under the influence of soil CO2 181

4.1.2.2 Buffering systems in the soil 181

4.1.2.3 Mineral precipitations at hot sulfur springs 182

4.1.2.4 Formation of stalactites in karst caves 183

4.1.2.5 Evaporation 183

4.1.3 Groundwater 184

4.1.3.1 The pE-pH diagram for the system iron 184

4.1.3.2 The Fe pE-pH diagram considering carbon and sulfur 186

4.1.3.3 The pH dependency of uranium species 187

4.1.4 Origin of groundwater 188

4.1.4.1 Pumping of fossil groundwater in arid regions 188

4.1.4.2 Salt water/fresh water interface 189

4.1.5 Anthropogenic use of groundwater 190

4.1.5.1 Sampling: Ca titration with Edta 190

4.1.5.2 Carbonic acid aggressiveness 191

4.1.5.3 Water treatment by aeration - well water 191

4.1.5.4 Water treatment by aeration - sulfur spring 191

4.1.5.5 Mixing of waters 193

4.1.6 Rehabilitation of groundwater 194

4.1.6.1 Reduction of nitrate with methanol 194

4.1.6.2 Fe(0) barriers 195

4.1.6.3 Increase in pH through a calcite barrier 196

4.2 Reaction kinetics 197

4.2.1 Pyrite weathering 197

4.2.2 Quartz-feldspar-dissolution 199

4.2.3 Degradation of organic matter within the aquifer on reduction of redox-sensitive elements (Fe, As, U, Cu, Mn, S) 201

4.2.4 Degradation of tritium in the unsaturated zone 203

4.3 Reactive transport 205

4.3.1 Lysimeter 205

4.3.2 Karst spring discharge 205

4.3.3 Karstification (corrosion along a karst fracture) 207

4.3.4 The pH increase of an acid mine water 208

4.3.5 In-situ leaching 210

4.3.6 3D Transport - Uranium and arsenic contamination plume 212

References 215

Index 221

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews